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SUMMARY

A partially implicit method for the unsteady compressible Navier-Stokes equations is developed. The
method is based on an explicit treatment of streamwise fluxes and an implicit treatment of normal fluxes.
This leads to a linear system which is generated by an efficient finite difference procedure and which is
block pentadiagonal. The method is tested on a shock-induced oscillatory flow over an aerofoil. Paraliel
implementations of an explicit, fully implicit and partially implicit method are investigated.
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1. INTRODUCTION

An important part of the aircraft design process is the demonstration of aeroelastic stability
under flight conditions. Computational tools have an important role to play owing to the expense
of wind tunnel programmes for aeroelastic studies.! For freestream Mach numbers which are
outside the transonic range, linear aerodynamics can provide reasonable predictions of the flutter
boundary. However, for transonic cases there are significant non-linear effects which in general
can only be satisfactorally described by the Euler or Navier-Stokes equations.

Implicit methods are generally preferred for viscous flow simulations owing to the time step
restrictions for explicit methods introduced by the small mesh spacings needed to resolve
boundary layers. The most popular method for solving the unsteady compressible Navier-Stokes
equations was introduced by Beam and Warming? in 1978 and is based on an alternating
direction implicit (ADI) approximate factorisation. Published applications include moving
aerofoils, shock-induced oscillations (SIOs) and aeroelastic studies. The application of explicit
methods to unsteady viscous applications has been limited. One example is the multiple-
grid/Runge-Kutta method used in Reference 3 to study the SIO problem and high-angle-of-
attack flows.

Parallel computers are becoming increasingly important in computational fluid dynamics.
The potential of multiple high-performance processors has provided opportunities for tackling
problems which have hitherto been intractable for serial computers. For a code to fully exploit
the theoretical performance of a parallel machine, the algorithm must divide up the work evenly
amongst the processors while minimizing communication and the idleness which results when
one processor waits for results from another.

In the present paper we shall examine various time-stepping strategies for solving flows over
aerofoils from the point of view of both efficiency of the algorithm and parallel implementation.
The methods that are studied are the commonly used implicit and explicit methods and a hybrid
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method which treats some terms explicitly and some implicitly. The details of the methods are
given in the next section.

The division of the work amongst the processors is particularly simple for the aerofoil problem
considered owing to the small number of processors available and the simple geometry and
structured mesh used. However, flows over wings are of practical interest and the aerofoil
problem represents a suitable first model problem for its three- dimensional counterpart. With
the advent of software such as PVM it is now possible to run codes in parallel on workstations.
Manufacturers are bringing out machines that use a small number (around four or eight) of
processors of the type currently used in high-performance workstations. Examples include the
IBM SP1 and the DEC Alpha farm. This form of processing is attractive owing to the flexibility
of such a system and the high performance that can be attained at a small cost relative to some
forms of supercomputing. There are also machines such as the Intel iPSC i860 Hypercube used
in the present work, which feature a small number (around 64) of fast processors. Hence the
simple mapping used in this work might not be appropriate for massively parallel systems but
it is practical for this increasingly important form of parallel processing.

We shall therefore concentrate on the communication aspects of the parallel implementation.
Explicit methods typically require a small amount of communication. The need to solve a linear
system at each step of an implicit method results in increased communication and the inherently
sequential nature of back substitution limits the efficiency of the parallel implementation.
Algorithms can be designed to have good parallel properties at the expense of performance on
a single processor. An example of this is the use of a special preconditioning technique for a
conjugate gradient solver in Reference 4, which results in slower convergence than some other
techniques on a serial computer but which has a far higher parallel efficiency. If enough
processors are available to compensate for the poorer serial performance, then the good parallel
properties allow a rapid solution. In this paper we seek to exploit this philosophy by combining
the best features of explicit and implicit methods to provide an algorithm which requires the
same communications as an explicit method but retains some of the advantages of an implicit
method.

The rest of this paper is organized as follows. In the next section the various options for the
time discretization are discussed and the model and spatial discretization are described. An
efficient method for the calculation of the Jacobians of the flux approximations is formulated.
The unsteady aerofoil test problem is briefly discussed and resuits to demonstrate the relative
efficiencies of the three approaches are given.

2. A PARTIALLY IMPLICIT METHOD

In this section we develop a method for solving the unsteady, thin layer, Navier-Stokes equations
given by
dq JoF oG &S
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Here
0,y = 2uv, — dulu, + v,), Ory = Oy = ity + 0,
g4y = —x 0T/dy, p =y — Dle — 3p® + )], T = cs[e/p — Hu* + v?)]).

The symbols p, u, v, €, p, u, k and T represent the fluid density, the two components of velocity,
energy, pressure, viscosity, heat conductivity and temperature respectively. The constants y and
cs stand for the ratio of the specific heats and the specific heat at constant volume respectively.
The viscosity is assumed to vary with temperature by Sutherland’s law. The Baldwin-Lomax
model is used to provide a contribution to the viscosity from turbulence. The terms arising from
the turbulence model are all treated explicitly in the present work and this was found not to
influence the stability of the method.

We anticipate that shock waves will be present in the flow and so the spatial discretization
we use is Osher’s flux function with a MUSCL-type interpolation and a limiter to prevent
spurious oscillations. The differentiability of Osher’s flux function is a property which is
important for the implicit formulation given below. The other main feature of the flows that we
wish to simulate is the presence of a boundary layer. This requires a fine mesh in one direction
which introduces severe stability limitations on the time step. It is this problem that is addressed
in this section.

In the following we shall adopt the notation

0F/ox ~ R,, (G — S)/éy ~ R,.

Here R, and R, are obtained from the Osher scheme approximation to the convection terms
and a central difference approximation to the viscous fluxes.
The first option for the time discretization is to use an explicit method of the form

n+1

- — q"
At

q

= —R,(q") — R,(q"). @

An example shown below will illustrate that the stability limitations on At can be several orders
of magnitude smaller than the value required for accuracy reasons. This leads to a very inefficient
method, although time-accurate multiple-grid methods are being developed®:®> which allow this
problem to be partly overcome. The explicit method has the advantage that it requires very
little memory when compared with the implicit method below. The second possibility is to use
a fully implicit method of the form

I oR, OR)N .. o
<E+ 2 +—a-q—>(q q") = —R,(q") — R,(q"). (3)

The time step can now be chosen on the basis of accuracy rather than stability. However, there
are several major drawbacks, including the large memory requirement to store the matrix on
the left-hand side of (3) and the difficulty of adapting the method to run efficiently on a parallel
computer as discussed in Section 1.

We shall therefore consider a partially implicit scheme. This method removes the stability
limitation arising from the fine mesh required to refine the boundary layer around an aerofoil.
In the following the derivation of the method is made in Cartesian co-ordinates for simplicity.
However, implementation has been made in curvilinear co-ordinates with the implicit and explicit
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directions corresponding to curvilinear directions. If a solid boundary lies on the plane
x = const., the equation for the updates can be written as

<l+a'Ry>("”— ") = —R(q") — R,(q") (4)
At oq q q Aq )

The matrix on the left-hand side of (4) decouples into a block pentadiagonal system for each
y-line in the mesh and therefore the solution of the linear system is much simpler than for the
fully implicit method. The calculation of the Jacobians is discussed in the next section.

The cost of each partially implicit step is roughly three times more expensive than the
corresponding explicit method and is relatively cheap compared with the fully implicit method.
In addition, the method is very parallelizable, since it has the same communications as the
explicit method if the mapping on to processors is done by mesh lines in the y- direction. A
further benefit is that since the linear system can be solved one y-line at a time, the storage
requirements are little more than those of the explicit method. For the present spatial formulation
the storage required relative to the explicit method for the flow variables and the matrix is
1 + 40/j,, for the partially implicit method and 61 for the fully implicit method, where j, is the
number of grid points normal to the aerofoil.

On the debit side there is still the stability restriction arising from the x-direction, but this is
usually much less restrictive than the limit arising from the fine mesh used to resolve a boundary
layer. Also, it should be noted that the uncoupling of pentadiagonal systems for each mesh line
is lost if the full Navier—Stokes equations are required. Fortunately, the thin layer equations
provide a good description for many flows of interest.

3. EFFICIENT CALCULATION OF THE JACOBEAN MATRIX

The use of a finite difference approximation to the Jacobian of the discretization is attractive
because of the simplicity of the calculation and implementation. However, the process is
computationally intensive and so efficient methods must be used if the resulting computer code
is not to be quick to develop but too slow to use.

In Reference 6 the problem of computing a finite difference approximation to a sparse Jacobian
is addressed. To fix ideas, assume that the function whose Jacobian A we wish to approximate
is denoted by R. The following algorithm can be used to minimize the number of function
evaluations required.

1. Select a set of the indices S of the components of q such that A; ; =0 Vi, jeS, i # .

2. Perturb ¢; Vie S.

3. Evaluate R for the perturbed argument and evaluate the finite difference approximation
to the terms A, ; for 1 <i < n and Vje S, where 7 is the dimension of q.

4. Repeat steps 2 and 3 for a different S until all the components of A have been evaluated.

Note that in each cell there are four unknowns, only one of which may be pertrbed for each
function evaluation. The total number of evaluations required is 3 x 3 x 4 for the first-order
method and § x 5 x 4 for the second-order method. It can be seen that the evaluation is indeed
expensive. This method considers the cell-based residuals and was used in Reference 7.

However, a more efficient procedure arises from considering the residual flux-by-flux. We shall
consider the numerical fluxes G, ;,,, and §; ;,,,,. The method for F;,,,, ; is similar to that
used for G, ;, /3-



SIMULATION OF VISCOUS AEROFOIL FLOWS 263

Table I. Comparison of CPU times in seconds for the
residual-based and flux-based methods for calculating the
Jacobian on different meshes

Mesh Residual-based Flux-based Speed-up
64 x 16 334 33 10-1
128 x 32 1376 15-5 88

The viscous flux S, ;,,,, depends on the values in cells (i,j) and (ij + 1). It is fairly
straightforward to calculate and encode the contributions to the Jacobian owing to the relatively
simple central difference approximations used.

For the convective terms the complicated nature of the numerical fluxes arising from Osher’s
scheme makes analytical expressions unattractive. If MUSCL interpolation is used, then the flux
G, ;11,2 depends on values in the cells (i, j — 1), (i, /), (i, j + 1) and (i, j + 2). We can denote this by

Gi.j+ 12 = Gi.j+1/2(qi.j—l; 9,5 9i,j+ 1> qi.j+2), (3)
which in turn can be rewritten as

Ai.j+ 12 = Gi.j+ 1/2(‘]1,, qz), (6)

where

q = qL(qi.j— 19,5 9i, 5+ 1) qr = qR(qi.qu.j+1’ Qi+ 2)-

To calculate the derivatives of G; ;. ,,,, the chain rule is used to yield

aGi,j+1/2 _ aGi.j+ 1/2 % " 6Gi.j+ 1/2 3&
q;,x qL q;x qr q;.«

Y

The derivatives of the MUSCL interpolation can be evaluated analytically and a symbolic
algebra package called REDUCE has been used to quickly generate efficient code. The
calculation of the terms in 6G; ;. {/,/0q,, requires four evaluations of G, ;,,,, and similarly for
0G; ;4 1/0qg, leading to eight evaluations in total.

The derivatives for each flux can be added into the Jacobian as they are calculated. The
flux-based method requires an equivalent of eight function evaluations instead of the 100
evaluations required for the cell-based method. This neglects the computation of the MUSCL
derivatives, which turns out to be fast compared with one function evaluation. In theory the
new method should be over 12 times faster. The actual comparison for two mesh sizes is given
in Table 1. The theoretical speed-up is not observed owing to the cost of additional multi-
plications in composing the chain rule and searching for the correct place in the matrix to place
the derivative approximations. However, the speed-up is still by a factor of around 10.

4. RESULTS

The test problem considered is turbulent flow over an 18% thick circular arc aerofoil at zero
incidence, a Reynolds number of 11 x 10° and a freestream Mach number of 0.771. The mesh
used has 71 points around the aerofoil and 31 points normal. The far field is located at 10
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Table II. Frequencies for the SIO problem
computed by various methods

Method Reference Frequency
1-D-Imp Present 041
AF-CGS 8 0-41
MacCormack 9 0-40
MG /explicit 3 0-40
Beam-Warming 10 041
Experiment 11 0-49

chords. For these conditions the shock waves on the upper and lower surfaces of the aerofoil
oscillate out of phase. The period of the flow is roughly eight non-dimensional time units.

A comparison of computed and experimentally determined frequencies that are available in
the literature for this case is shown in Table II. The present results and those in Reference 8
compare favourably with published experimental and computational results based on central
differencing with artificial dissipation. A fuller investigation and verification of the solution is
made in Reference 8.

The degree of approximation in the partially implicit method is less than that involved in the
fully implicit method, since no linearization is required for the streamwise fluxes. Stability
restrictions also mean that small time steps must be taken relative to those which can be used
for the fully implicit method. It is therefore not surprising that the solution obtained by the
partially implicit method is close to the solution obtained on the same grid by the fully implicit
method-which has converged with respect to the time step. This is illustrated in Figure 1, where
one cycle of the oscillation in the lift coefficient is shown. The only difference between the results
is for the fully implicit case with 200 steps per cycle. This indicates that good time resolution
can be obtained by the fully implicit method with 400 steps per cycle. The partially implicit
method requires 40,000 steps per cycle because of stability restrictions. Around 80 x 10 steps
would be required for the explicit method and this case was not tried owing to the excessive
computer time which it would have involved. It is clear from these results that the time step for
the partially implicit method is determined by stability rather than accuracy.

The increase in the allowable time step for the implicit method over the partially implicit
method is by two orders of magnitude, resulting in a substantial increase in efficiency even
though one fully implicit step takes about 2.5 times longer than one partially implicit step.
However, the fully implicit method requires over 60 times the memory for this case. This can
prove very restrictive even for medium-size aerofoil problems and is a major problem for
three-dimensional flows. Discussion of possible applications where the partially implicit method
might prove to be more efficient in terms of run time than the fully implicit method is postponed
until Section 5. We continue this section with an examination of the algorithms from the point
of view of communication times to evaluate their parallel performance.

A parallel version of the code implementing the partially implicit method was written for the
Intel Hypercube at the SERC Daresbury Laboratory. The ease of parallelization is one attractive
feature of the algorithm. The mapping from the computational mesh to the processors is done
by lines and is shown for an aerofoil flow in Figure 2. The fluxes in the streamwse direction are
calculated first and the values at the boundaries between processors are communicated at this
stage. After these communications and the communication of the global time step the calculation
on each processor can proceed independently.
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Figure 1. Lift coefficient versus non-dimensional time for one period of the flow over an 18% circular arc aerofoil at

zero incidence, a Reynolds number of 11 x 10° and a freestream Mach number of 0.771. The results shown correspond

to 200, 400, 800 and 1600 steps per cycle for the fully implicit (F.I.) method and 40,000 steps per cycle for the partially
implicit (P.1.) method

13 14 15 16

Figure 2. Mapping from computational space to the processors for the aerofoil problem for 16 nodes.
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Table II1. Parallel efficiencies defined as 100CPU,/(n x CPU,), where n is the number of
processors, CPU,, is the CPU time taken on n processors and CPU, is the time taken on
one processor

Processors Explicit method Partially implicit method Fully implicit method!?

1 100 100 100
4 90 97 76
8 79 95 70
16 63 90 59

Table IV. Computation times ¢ ,,. and communication times ?_,, in milliseconds and their ratio for the
updating phase of the calculations for the explicit, partially implicit and fully implicit methods

Explicit method Partially implicit method Fully implicit method
Processors Leale teomm Ratio Loatc feomm Ratio Ratio
1 1810 0 — 10140 0 — —
4 464 6 83 2560 8 311 8
8 241 10 24 1290 11 117 4
16 129 10 13 659 10 67 2

The parallel efficiencies are shown in Table III. The relative communication to computation
is examined in Table IV for the three methods as the number of nodes is increased. The fact
that the partially implicit method involves more work than the explicit method on each processor
at each step but the communications are the same explains the improved efficiency of the partially
implicit method over the explicit method. The results for the fully implicit method of Reference
12 are included for reference and the reader is referred therein for details of the method and its
parallel implementation. It is clear that the efficiency of the fully implicit method is dropping
more rapidly than that of the partially implicit method as the number of nodes is increased.
This is due to the large amount of communication required by the implicit method.

5. CONCLUSIONS

In this paper a partially implicit method for the unsteady compressible Navier-Stokes equations
was proposed. This method uses implicit approximations normal to solid boundaries in order
to remove stability restrictions which arise from the fine meshes needed to resolve boundary
layers. The linear system decouples to a block pentadiagonal system for each row of the mesh.
An efficient way of calculating the finite difference approximations to generate the linear system
was given. The decoupling of the linear system allowed an efficient parallelization of the
algorithm which yielded high efficiencies when implemented on the Intel Hypercube. An
investigation of the ratio of communication time to computation time for each method was
presented and this showed that the partially implicit method was most efficient from this point
of view.

For the aerofoil results presented above it was found that stability limits arising from
the streamwise direction mean that the partially implicit method is much less efficient overall
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than the fully implicit method despite the better parallel properties of the partially implicit
method.

However, there are two possible cases where the partially implicit method could prove
practical. First, the partially implicit method does have potential to improve the performance
of codes that use explicit time stepping, such as the multiple-grid/Runge-Kutta algorithm used
in Reference 3. For the results on a single grid the increase in efficiency resulting from the
increased allowable time step is of the order of 1000. One of the main attractions of an explicit
method is the low memory requirement and using the partially implicit method would not
substantially increase the memory use.

Secondly, for some three-dimensional flows over wings a method which uses an implicit
treatment for the streamwise and normal fluxes and an explicit treatment of the spanwise terms
is under consideration and has considerable potential. The relatively coarse grid often used in
the spanwise direction does not lead to restrictive stability limits in the same way that the
streamwise terms did in the present paper. If this applies, then considerable improvements in
efficiency and memory use are achieved over the fully implicit method. The reduced memory
requirement in particular is very important for application to three-dimensional flows. In
addition, this method has the potential to make very efficient use of parallel machines of the
type used for the calculations of this paper.
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